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Rocked quantum periodic systems in the presence of coordinate-dependent friction
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We study rocked periodic systems with quantum fluctuations and coordinate-dependent friction. The steady
current along the direction of the external driving force is evaluated numerically in terms of the path-integral
Monte Carlo method and discussed in terms of the steepest descent approximation. Above the crossover
temperatureT. a classical-like distribution function is given in order to calculate the least nonvanishing
eigenvalue of the Fokker-Planck equation, thus one can finally obtain an expression of the current for
moderate-to-strong damping. The influence of nonlinear quantum dissipation on the magnitude and the direc-
tion of the average current is observed. The classical current is also calculated using the Langevin simulation.
The results show that when the friction is a periodic function of the coordinate, a net current averaging over the
two directions arises even in the absence of both spatial and time asymgdiop3-651X98)10109-3

PACS numbgs): 05.40:+j, 05.30—d, 85.25.Dq

[. INTRODUCTION that exhibit a frequency dependence are included. The focus
of this work is on the effects of nonlinear quantum dissipa-
A number of recent attempts to understand broad printion on the current for moderate to strong damping; there
ciples of directed transport have been focused on the ovegXists a correction to the classical result. Moreover, we com-
damped ratchetlike periodic systems, which extract work oupare the results of the PIMC method with the one based on
of the nonequilibrium fluctuation§1]. Here the driving the Langevin simulatiofLS) at high temperatures. We will
force, the potential, and the noise in fact play cooperativeshow how space-dependent friction can induce the directed
roles. It is known that the combination of a ratchet and eithegurrent even though both the ratchet potential and the time
colored noisd2] or a symmetric unbiased driving for¢g],  are completely symmetric. The direction of the average par-
as well as the coupling between a symmetric periodic potenticle motion is controlled by the temperature as well as the
tial and a temporally asymmetric fluctuatipfl, is enough to  parameters of the potential and friction.
allow a net average current. More recently, the quantum
rocked ratchet has been investigated in terms of the steepest Il. MODEL AND METHOD
descent approximatiofSDA) [5]. The quantum effect be- ) ) o )
comes important for the transport properties in the regime of W€ introduce coordinate-dependent friction by allowing
temperatureT<2T, and the tunneling can induce current for @ nonlinear coupling between the particle and the oscil-
reversal. In the SDA the barrier height is assumed to be largitor bath in the system-plus-reservoir Lagrangian
with respect to temperaturdg;T, so it is necessary to im- 0
prove this approach in the opposite region of temperatures L= lm'xz—U(x,F)+ D My
T>2TC 2 a=1 2
In the case of open systems, little work has been done )
taking into account the nonlinear quantum dissipation in the ] 1)
effective distribution functior{6]. In particular, friction of '
the system near the well and that near the barrier may be
quite different from each other; it has been shown that thédere  the q,’s are harmonic bath  modes,
introduction of coordinate-dependent friction can lead toU(X,F)=V(x)—Fx (cf. Fig. 1) is a tilted periodic potential,
gualitatively different physic§7,8]. For instance, its proper- V(x) denotes a periodic potential with periag andF is an
ties in either direction are different. external driving force. The functiofi(x) couples the bath
Here the path-integral Monte CanlBIMC) method is ap- modes nonlinearly to the particle coordinate
plied to the study of the quantum currents of a Brownian By eliminating the environmental degrees of freedom, the
particle moving in the tilted washboard potentiff§. The functional path-integral form of the partition function at the
finite-height barrier and different dissipation mechanismsemperaturkgT=1/8 can be expressed §3]
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FIG. 1. Tilted ratchetU (solid lineg and its effective classical
potentialU.¢; (dashed lineswhenF,=—0.1 (above andF¢=0.1
(below).
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Seff[X(T)]:fo [mez(r)-l-U(X(T),F) dr
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+—f drf dr' ¢(7—17")
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X[F(x(m) = fx(7))]2 )

The last term describes the influence of the environment and

the influence kerned(r) is given by

COSKO%,B(D o|T—1'|)
sinh(0.5: Bw)

d(r—71 )——f dw
(4)

Here 6(w) is the spectral density characterizing the bath,

defined in Eq(20).

Now we evaluate numerically the partition function using
the Monte Carlo method. It is a generalized improvement of

the Monte Carlo random walk algorithfdQ] to a nonlinear
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exponent become a properly normalized Gaussian measure,
it is also convenient to scale the new variabjes} to have

the range 0,1]. To do this, let us introduce the following
recursion reaction for thekth random walk, xX with

X§=% (n=1,2,...N-1:k=1,2,... M) [10,11]:
o Xe N-n
X =N_n+1 N-nt1in-1
2k’ N-n |2 6
m  N(N-n+1)| Y@ ®
wherey(w) is given by
Yn ’ 12
J_ dy,exp(— Yy, ) =w,. (7

We use the rational approximation fp(w) taken from Ref.
[22].
Equation(5) then becomes

29)= [ ax

1 1 1
Xf dwlf dwzf dwN,l
0 0 0

B N
exp{——z [U(Xn,F)—U(x¢,F)]
N n=1

m
475 AU P

% 2 N n
S I L

[F(xn) = f(X))] ]
®

Equation(8) as an (N-1)-dimensional average is straightfor-
wardly evaluated using the Monte Carlo method. Thus the
partition function is given by

z(p)= j dx, mQBeXF[—BUeff(Xc.F)], ©

quantum dissipation system. First we express the integral afhere the effective classical potential reads

the kinetic energy term in the form

1 (12
’ m 3 0 o Ueff(XCIF)ZU(XcaF)_EIn Mkz:]_ eXF[_,BUk(Xc:F)
Z(ﬂ):f dXC ZﬁﬁzﬂjwdxlfochZ"'fdeN_l
Nm |\ NTP? —BGK(XC)]], (10)
(ZWﬁzﬂ P| zﬁzﬂz (Xp—Xp— 1
with
B hE o < [ﬁﬂ _.} N1
NZ U F)- N2n§=:1 ,—;‘ﬁ N (D) U(xe,F)= (1 N)U(xC,F)+Z U(xn,F)}
11
X[f(Xn)—f(X,—)]Z], 5
G <x>=h—3§ 2 ¢[—(n— [f () = F(x) 12
wherex, is the coordinate of a classical trajectory. In order < ¢ 2N2i=1 (5 D A =

to make the contribution of the kinetic energy term to the

(12)
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FIG. 3. Dependence of the currel{f-) on the temperature with
the parametersge=1 and r=1. The solid line shows the PIMC
result, the dashed line shows the SDA result, the dash-dotted line
shows the classical FP result, and the squares are the data of the LS.

FIG. 2. Barrier heightAU ,;, /% Q) (thick solid line,x=1) and
the factorwg/Q, (below three linesas a function of the external
driving forceF. The parameters are=1, =1 (thin solid ling;
a=1, 7=2 (dashed ling anda=2, =1 (dash-dotted line

tribution function of the system. Indeed, Ed4) has a cor-

We focus on the effective classical potential, which ac-raction to the overdamped casé$3] with the factor
counts for the effects of both quantum fluctuation and non-

X L - SO wgr/|Up|. In the case of weak thermal noise, the potential
linear dissipation, such that the stationary distribution func-barrier is much larger than the temperatlgeT; then Eq
tion is given by C is the normalization constant (14) can be reduced to the result based on the $BDJA0N
-1 _ the other hand, at high temperatures, the effective classical
P(xe,F)=C "exd ~ BUer(Xe.F)]: (13 potential U reduces to the original potential and thus
Starting from Kramer's activation rate theory and the leasEd- (14) becomes a classical current. In the case of Ohmic
nonvanishing eigenvalue of the Fokker-Planck equatiordampingzn= 7,, wherey, is the zero-frequency friction co-
above the crossover temperature, the probability currengfficient, we havewR=(\/7721+4m|U;; —n)/2m with 7,
along the direction of the external driving force is related to= 7,[df(x,)/dx]%. For overdamped and large driving force

the stationary distribution function by the relation cases, the factang/|U}| approaches a fixed Vam@fl-
When the temperature is much less than the barrier height
_ wR kgT[1—exp —FL/kgT)] of the potential, the analytical expression for the current with
I(F)= vy L BN (14) a quantum fluctuation in terms of the steepest descent ap-
fo D(X'F)dXL p(x’,F)~“dx proximation is given by5,9,14

Here wgr denotes the coupling-induced dissipation and
memory-renormalized barrier frequency, which also depends
on F. It is determined by the largest positive root of the

Jam(F) =Kgmp TS A UmiF)]

equation X{1—exp(—BFL)}, (16)
W2 with the quantum correction factor
_ b
WR= 1. ) ’ (15) 5 . df(X) 2 ,
wort —p(wR)[FO0/AXIE . mtvinup(ne)| — +Ug
X=XO
kgm=11 2 (17)
with w,= |Up|/m. HereUy<O0 is the barrier’s curvature of "L M2 nupne) d;(x)} +Ul
the tilted potentiall at the extremax, and n(wg) is the X X=Xy,

Laplace transform of the memory dampimgt). The cross-
over temperature is defined By=7%wg/27kg . Itis readily ~ andv=2wkgT/f. AU (F) denotes the smaller of the po-
seen that the classical transmission faet@l/w,<1 deter- tential barriersAU(x,F) along the direction of the external
mines the difference between the transition-state theory andriving force andJj is the curvature obl at the ground state
the correct classical rate due to diffusive recrossing of th&o. The factorkyy, tends to unity asT—o and diverges
barrier. exactly at the crossover temperatdrge It is worth noticing
This method is in fact not restricted to the classical regimghat the value of the quantum correction factor may be
because one can study as well the quantum probability disgreater or less than unity d@f(x,)/dx#df(xg)/dx.
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FIG. 4. Quantum correction factor as a function of the tempera-

ture for differenta =—0.5, 0.0, 0.5, and 0.8 from top to bottom.
The parameters arg=1, =2, 7=1, andF;=0.2.

IIl. NUMERICAL CALCULATION
OF QUANTUM CURRENTS

In the present paper the rocked periodic potentiét, F)
and the coupling functioi(x) are taken in the forms

U(x,F)=V(x)—Fx
=—Vy|sin(2mx/L)+ %sin(47rx/L) —Fx
(18

and

AL
f(x)=x+ Ecos{wa/L), (19

whereu is an asymmetry parameter of the periodic potential

V(x) with =0 and 1 denoting the symmetric and forward
ratchets, respectively, andis a nonlinear coupling constant.
A typical representative of a memory dissipation is the
Drude form x(t)=(nq/7)exp(-t/7). The corresponding

6(w) and 7(w) read

oW
(w7)?’

Letting 7—0 in Eg. (20), we recover the Ohmic damping
case.

T, F, \, 7, and a dimensionless parametet 7,/2m(),
are five parameters of the model. He@y:=(2m/

_ 7o
1+ w7’

7(

0(w)=

®
1+ )

(20
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FIG. 5. Classical average curreldy; (solid lineg and its quan-
tum correctionJ,, (dashed lingsvs the nonlinear coupling con-
stant\ for different u=0 (left) and 1 (right) at the temperature
kgT=0.5Q,. Note that sign of the current changes on the right-
hand side of the minima.

S( ) V1+2u—4pF—1
co =

2u
andFs=FL/Vy27. One thus has the relationg <x,<Xg
andx, <x,<xp within one period structure for a tilted for-
ward ratchet. The ground and barrier frequencies are deter-
mined by

27X
L

(21)

wo=wy:=[|U"(xs,F)|/m]*?

=Qo[|sin2mxs/L) + wsin(4mxg/L)| 1Y% (22

Hence op<w,<w, due to [U"(xg)]|<|U"(Xp)l
<|U"(xp)I-

In the calculations of the PIMC method, we take=50
andM = 1000 to obtain sufficiently accurate results. Next we
fix the barrier height of the original potentig(x) through
Vo=1.510. In Fig. 1 we plot the tilted washboard ratchets
U and the effective classical potentidlg¢s in units of2 Q)
with the parameterkgT=0.5%Q,, a=2, 7=1, and \
=0.5. We have found that the effect of quantum fluctuation
makes the barrier height &f .¢; decrease while the dissipa-
tion makes it increase.

The barrier height of the tilted periodic potential iy,
and the factomwg as a function of are shown in Fig. 2. For
an asymmetric periodic potentid(x), wg is not an even
function of the external driving force. It decreases with in-
creasing|F4|; this is because the frequencies of the ground

and barrier states become small whén| increases. Also,

L)[Vo/m]¥2is a frequency quantity introduced here to scalewy decreases when decreases and increases whene-

the current. The energy, e.g., the temperaky€, will be
scaled in units ofiQ),. The tilted potentialdJ(x,*F) dis-
play a local maximum and minimum within each period; let
us denoting by, andx, one of the local minima and by,
and x, its neighboring local maxima o¥(x) and U(x,
+F) for F>0. Those coordinates, satisfy the condition
U(xs,F)=0, i.e.,

creases; thua and = will play opposing roles for the steady
current. Moreover, we note thatU . .<AU . for the for-
ward ratchets and thed(F)=J(—F) for F>0 in the
present of space-independent friction.

In the linear coupling case, i.e\=0, the temperature
relation of the currendi(F) obtained from the various meth-
ods for F4=0.3 is shown in Fig. 3. We observe that the
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TABLE I. Average curren'(J_/Q0 vs temperaturekgT for different external driving forcek.

|F{=0.1 |F{=0.2 |F{=0.3
kgT Classical Quantum Classical Quantum Classical Quantum
0.2 0.983<10°° -3.299x10°° 7.650<10°8 -2.570<10°° 1.236x10°° 2.258< 1077
0.3 -1.985¢10°7 -2.745¢10°7 1.016x10°° -2.652x1077 1.066<10°° 2.174<10°°
0.4 -3.43410°° -3.518x 1076 -2.755< 1076 -6.344x 1076 1.109x 10°° -5.982x 1076
0.5 -1.608<10°° -1.523x10°° -2.665< 107> -3.089x 1073 -2.964x 1075 -5.006x 107 °
0.6 -4.181x10°° -3.858x 107 -7.915<10°° -7.861x 1075 -1.199x 1074 -1.297x10°*
0.7 -7.885¢10°° -7.365< 1075 -1.562x10°* -1.524x 1074 -2.477x10°4 -2.526x10°*
0.8 -1.226<10°4 -1.157x 1074 -2.478<10°% -2.391x 1074 -3.952x 1074 -3.894x 10°*
0.9 -1.68% 10™4 -1.596x 1074 -3.445<10°* -3.305x 1074 -5.479x 1074 -5.330x10°*
1.0 -2.138 104 -2.043x 104 -4.393x 104 -4.238<10° 4 -6.959x 10~ 4 -6.778<10°*

current with quantum fluctuation can become enhanced up tthe reversion of current easily realized at low tempera-
one order of magnitude as compared to the current based dares. This behavior is also understood from E@54)
a pure classical analysis when the temperature is close tnd (16): AU, <AU.,, and wg<wg when u=1;
2T.. It is seen from Fig. 3 that the SDA has a few errorshowever, the average current can be reverseff; ikf_ .
whenkgT>0.5AU iy, however, our resulting current of the At high temperatures, the direction of the average cur-

PIMC method is in agreement with the LS at high temperaLont is determined by the factopg/|U”| and lim, 7
tures. -
"+

The quantum correction factor is determined by the ratio=|F|/2L(wr/|Up"|—wg/|Up"]), so it is possible that
of the quantum and classical currents in the calculations 00 when wg/|U"(X,)|> wg/|U"(x5)| even for the for-
the PIMC method, given by,=Jqm/J¢ . Indeed,k,, ap-  ward ratchets.
pearing in Eq(17) is an approximation of this quantity. The
dependence of, on the temperature is plotted in Fig. 4 for IV. LANGEVIN SIMULATIONS OF CLASSICAL
different\. It is interesting to see that the effects of nonlin- INERTIA RATCHET
ear quantum dissipation make the values of the current in- ) ) ] ] )
crease or decrease. This behavior can be understood from The gener.all'zed Langevin equation with space- apd time-
EQ. (17): Kqm=1 whendf(xo)/dx=d f(x,)/dx, i.e., the fric- dependent friction can be derived from Eé) and is given
tion of the system at the barrier is less than that of the grounQy [15,16
state; however,k,, may be less than unity when . t df(x(t)) df(x(s)).
df(xg)/dx<df(xp)/dx, i.e., the friction of the system at the mx(t)+f dsT(t) ﬂ(t_S)T(S)X(S)
barrier is larger than that of the ground state. 0

The gua_ntltly of interest in the present paper is an ave_rage JU(D).F)  df(x(D))
currentJ: J=3[J(F)+J(—F)]. Figure 5 plots the magni- =

o = . axX(t) dx(t)

tude and direction of the average currdnts the nonlinear
coupling constant for the tilted symmetric and forward The Gaussian random foregt) has zero mean and obeys
ratchets. It is seen that the sign of the average currerihe generalized fluctuation dissipation theorem,
changes wheh varies even for a symmetric periodic poten-
tial with x=0. Based on the SDA, we know that the direc- (e(De(s))=kgTn(t=s). (24)

tion of J is determined by the three quantitiesz/|Up|,  Now the friction kernel functionk(t) is taken to be the
AUpin, andkqy. Because the periodic potential has beenOhmic s-correlated form in order to study mainly the effects
tilted upward or downward, the positions of the local minimaof the coordinate-dependent friction on the inertia ratchets.

and maxima folJ (x, = F) are not identical and the values of The equations of motion for the particle with mass=1
the above three quantities are different along the two directhen read

tions. We find thatwg/|U"(x,)|>wg/|U" (X, )| and f :
>f, ; however,AU;;=AU;, when\>0. If the product x()=v(1),
of the former two quantities exceeds the latter, the current Con
may be negative for both the symmetric and forward ratch- v(=h(xv)+g(X)&M) +F(1), 25
ets. Of course, the value af leading to the current reversal with
is reduced with decrgasir}g. dV(x)

The dependence dfonkgT is shown in Table | with the h(x,v)=—n(X)v(t)— ax g(x)?=n(x). (26)
parametersr=2, 7=1, u=1, and\ =0.5 for several values
of Fs. WhenF decreases or the temperatlgdl inCreases, the newly defined random forcgt) is Gaussian, has zero
the asymmetric periodic potential plays less of a SeleCt'V‘?nean and most importantly i correlated
role. Thus J produces reversal when the temperature
increases and the effect of quantum fluctuation makes (E(1))=0, (&(M)E&"))y=2kgTo(t—1"). (27)

g(t). (23
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FIG. 6. Average positiogx(t)) vs time (the common param-
eters arg,=50.0 andA=0.5) as a function ofa) 7y with u=1,
A'=0.0, and kgT=0.2 (here the results corresponding tgy
=0.05 are reduced by two orders of magnityd®) kgT with u«
=1,\"=0.0, and7y=2.0, and(c) the parameterg and\’ with
kgT=0.2 andzny=2.0.

Here we will again consider space-dependent friction,
which is a symmetric periodic function with the same period
as the potential

n(X)=7o[1+\'cog2mx/L)]. (28

For external force we use a systematic deterministic square-
wave field with zero mean in time:

1
F()=A, 0=t<zt, modt,

F(t)y=—A, %te<tste, modt,. (29
te is the time period of the external driving force, which is
assumed to be longer than any other time scale of the system
in the adiabatic limit.

In this section we apply the stochastic Runge-Kutta algo-
rithm [17] to numerically integrate a set of Langevin equa-
tions(25). In order to find out whether or not a current exists,
we shall look for the behavior of the average posit{a(t) )
of the particle as a function of time. In Figs(ah-6(c) the
average position of the particle driven by an external square-
wave field in the presence of space-dependent friction is
shown. Every situation described below was obtained with
100 realizations andt=0.01 time step. The different curves
correspond to different damping coefficiengg [Fig. 6(a)],
to different temperaturekgT [Fig. 6(b)], and to different
nonlinear friction constants’ in Eq. (28) [Fig. 6(c)].

We want to make the following points. First, in Figiah
there are no transitions out of the wells wheg—« and
therefore no current. If the friction is too small, i.eyz—0,
there is also no current, although the oscillation of the par-
ticle along the two directions is strong. Hence a finite, sta-
tionary current requires a finite dissipation for the rocked
ratchets. Next, in Fig. ®) we observe that the current van-
ishes whenkgT—0 unlessA is quite large. However, the
current does not vanish and reverses wkgh is large, as
discussed in Sec. lll. That is to say that the strong noise does
not completely eliminate the effects of the potential asym-
metry. Finally, in Fig. €c), it is important to note the behav-
ior of the current as a function of’ for fixed kgT and 7,.
Note that the direction of the current varies wkh because
the friction at the barriers is different for the upward and
downward tilted ratchets.

V. CONCLUSION

We apply the path-integral Monte Carlo method to study
the probability current of the one-dimensional rocked ratchet
systems with quantum fluctuation and space-dependent
memory damping. Above the crossover temperature, a net
average current is induced by a zero-mean external driving
force in the presence of coordinate-dependent friction even
for the symmetric periodic potential. The present approach
can be reduced to the classical current with finite barrier at
high temperatures and agrees with the result of the steepest
descent approximation at low temperatures. The quantum ef-
fect makes a ratchet play less of a selective role and the
memory time of the damping plays an opposing role for the
current against the friction strength. The coordinate-
dependent friction can make the magnitude of the quantum
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