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Rocked quantum periodic systems in the presence of coordinate-dependent friction
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We study rocked periodic systems with quantum fluctuations and coordinate-dependent friction. The steady
current along the direction of the external driving force is evaluated numerically in terms of the path-integral
Monte Carlo method and discussed in terms of the steepest descent approximation. Above the crossover
temperatureTc a classical-like distribution function is given in order to calculate the least nonvanishing
eigenvalue of the Fokker-Planck equation, thus one can finally obtain an expression of the current for
moderate-to-strong damping. The influence of nonlinear quantum dissipation on the magnitude and the direc-
tion of the average current is observed. The classical current is also calculated using the Langevin simulation.
The results show that when the friction is a periodic function of the coordinate, a net current averaging over the
two directions arises even in the absence of both spatial and time asymmetry.@S1063-651X~98!10109-5#

PACS number~s!: 05.40.1j, 05.30.2d, 85.25.Dq
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I. INTRODUCTION

A number of recent attempts to understand broad p
ciples of directed transport have been focused on the o
damped ratchetlike periodic systems, which extract work
of the nonequilibrium fluctuations@1#. Here the driving
force, the potential, and the noise in fact play coopera
roles. It is known that the combination of a ratchet and eit
colored noise@2# or a symmetric unbiased driving force@3#,
as well as the coupling between a symmetric periodic po
tial and a temporally asymmetric fluctuation@4#, is enough to
allow a net average current. More recently, the quant
rocked ratchet has been investigated in terms of the stee
descent approximation~SDA! @5#. The quantum effect be
comes important for the transport properties in the regime
temperatureT<2Tc and the tunneling can induce curre
reversal. In the SDA the barrier height is assumed to be la
with respect to temperaturekBT, so it is necessary to im
prove this approach in the opposite region of temperatu
T.2Tc .

In the case of open systems, little work has been d
taking into account the nonlinear quantum dissipation in
effective distribution function@6#. In particular, friction of
the system near the well and that near the barrier may
quite different from each other; it has been shown that
introduction of coordinate-dependent friction can lead
qualitatively different physics@7,8#. For instance, its proper
ties in either direction are different.

Here the path-integral Monte Carlo~PIMC! method is ap-
plied to the study of the quantum currents of a Brown
particle moving in the tilted washboard potentials@5#. The
finite-height barrier and different dissipation mechanis
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that exhibit a frequency dependence are included. The fo
of this work is on the effects of nonlinear quantum dissip
tion on the current for moderate to strong damping; th
exists a correction to the classical result. Moreover, we co
pare the results of the PIMC method with the one based
the Langevin simulation~LS! at high temperatures. We wil
show how space-dependent friction can induce the direc
current even though both the ratchet potential and the t
are completely symmetric. The direction of the average p
ticle motion is controlled by the temperature as well as
parameters of the potential and friction.

II. MODEL AND METHOD

We introduce coordinate-dependent friction by allowi
for a nonlinear coupling between the particle and the os
lator bath in the system-plus-reservoir Lagrangian

L5
1

2
mẋ22U~x,F !1 (

a51

`
ma

2

3H q̇a
22va

2Fqa2
ca

mava
f ~x!G2J . ~1!

Here the qa’s are harmonic bath modes
U(x,F)5V(x)2Fx ~cf. Fig. 1! is a tilted periodic potential,
V(x) denotes a periodic potential with periodL, andF is an
external driving force. The functionf (x) couples the bath
modes nonlinearly to the particle coordinatex.

By eliminating the environmental degrees of freedom,
functional path-integral form of the partition function at th
temperaturekBT51/b can be expressed as@9#

Z~b!5E D@x~t!#exp$2Se f f@x~t!#/\%. ~2!

Here the effective actionSe f f is given by
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Se f f@x~t!#5E
0

\bF1

2
mẋ2~t!1U„x~t!,F…Gdt

1
1

2E0

\b

dtE
0

\b

dt8f~t2t8!

3@ f „x~t!…2 f „x~t8!…#2. ~3!

The last term describes the influence of the environment
the influence kernelf(t) is given by

f~t2t8!5
1

2pE0

`

dvu~v!
cosh~0.5\bv2vut2t8u!

sinh~0.5\bv!
.

~4!

Here u(v) is the spectral density characterizing the ba
defined in Eq.~20!.

Now we evaluate numerically the partition function usi
the Monte Carlo method. It is a generalized improvemen
the Monte Carlo random walk algorithm@10# to a nonlinear
quantum dissipation system. First we express the integra
the kinetic energy term in the form

Z~b!5E dxcA m

2p\2b
E

2`

`

dx1E
2`

`

dx2•••E
2`

`

dxN21

3S Nm

2p\2b
D ~N21!/2

expH 2
N

2\2b
(
n51

N

~xn2xn21!2

2
b

N (
n51

N

U~xn ,F !2
\b2

2N 2 (
n51

N

(
j 51

n

fF\b

N
~n2 j !G

3@ f ~xn!2 f ~xj !#
2J , ~5!

wherexc is the coordinate of a classical trajectory. In ord
to make the contribution of the kinetic energy term to t

FIG. 1. Tilted ratchetU ~solid lines! and its effective classica
potentialUe f f ~dashed lines! whenFs520.1 ~above! andFs50.1
~below!.
d

,

f

of

r

exponent become a properly normalized Gaussian meas
it is also convenient to scale the new variables$vn% to have
the range@0,1#. To do this, let us introduce the following
recursion reaction for thekth random walk, xn

k with
xN

k 5xc (n51,2, . . . ,N21;k51,2, . . . ,M ) @10,11#:

xn
k5

xc

N2n11
1

N2n

N2n11
xn21

k

1F2p\2b

m

N2n

N~N2n11!G
1/2

y~vn
k!, ~6!

wherey(v) is given by

E
2`

yn
dyn8exp~2pyn8

2!5vn . ~7!

We use the rational approximation fory(v) taken from Ref.
@12#.

Equation~5! then becomes

Z~b!5E dxcA m

2p\2b
exp@2bU~xc ,F !#

3E
0

1

dv1E
0

1

dv2•••E
0

1

dvN21

3expH 2
b

N (
n51

N

@U~xn ,F !2U~xc ,F !#

2
\b2

2N2 (
n51

N

(
j 51

n

fF\b

N
~n2 j !G@ f ~xn!2 f ~xj !#

2J .

~8!

Equation~8! as an (N-1)-dimensional average is straightfo
wardly evaluated using the Monte Carlo method. Thus
partition function is given by

Z~b!5E dxcA m

2p\2b
exp@2bUe f f~xc ,F !#, ~9!

where the effective classical potential reads

Ue f f~xc ,F !5U~xc ,F !2
1

b
lnH 1

M (
k51

M

exp@2bUk~xc ,F !

2bGk~xc!#J , ~10!

with

Uk~xc ,F !5
1

NF ~12N!U~xc ,F !1 (
n51

N21

U~xn
k,F !G ,

~11!

Gk~xc!5
\b

2N2 (
n51

N

(
j 51

n

fF\b

N
~n2 j !G@ f ~xn

k!2 f ~xj
k!#2.

~12!
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We focus on the effective classical potential, which a
counts for the effects of both quantum fluctuation and n
linear dissipation, such that the stationary distribution fu
tion is given by (C is the normalization constant!

p~xc ,F !5C21exp@2bUe f f~xc ,F !#. ~13!

Starting from Kramer’s activation rate theory and the le
nonvanishing eigenvalue of the Fokker-Planck equat
above the crossover temperature, the probability cur
along the direction of the external driving force is related
the stationary distribution function by the relation

J~F !5
vR

uUb9u

kBT@12exp~2FL/kBT!#

E
0

L

p~x,F !dxE
x

L1x

p~x8,F !21dx8

. ~14!

Here vR denotes the coupling-induced dissipation a
memory-renormalized barrier frequency, which also depe
on F. It is determined by the largest positive root of th
equation

vR5
vb

2

vR1
1

m
ĥ~vR!@ f ~x!/dx#x5xb

2

, ~15!

with vb5AuUb9u/m. HereUb9,0 is the barrier’s curvature o

the tilted potentialU at the extremaxb and ĥ(vR) is the
Laplace transform of the memory dampingh(t). The cross-
over temperature is defined byTc5\vR/2pkB . It is readily
seen that the classical transmission factorvR /vb,1 deter-
mines the difference between the transition-state theory
the correct classical rate due to diffusive recrossing of
barrier.

This method is in fact not restricted to the classical regi
because one can study as well the quantum probability

FIG. 2. Barrier heightDUmin /\V0 ~thick solid line,m51) and
the factorvR /V0 ~below three lines! as a function of the externa
driving forceFs . The parameters area51, t51 ~thin solid line!;
a51, t52 ~dashed line!; anda52, t51 ~dash-dotted line!.
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tribution function of the system. Indeed, Eq.~14! has a cor-
rection to the overdamped cases@13# with the factor
vR /uUb9u. In the case of weak thermal noise, the poten
barrier is much larger than the temperaturekBT; then Eq.
~14! can be reduced to the result based on the SDA@5#. On
the other hand, at high temperatures, the effective class
potentialUe f f reduces to the original potentialU and thus
Eq. ~14! becomes a classical current. In the case of Ohm
dampingĥ5h0, whereh0 is the zero-frequency friction co
efficient, we havevR5(Ah1

214muUb9u2h1)/2m with h1

5h0@d f(xb)/dx#2. For overdamped and large driving forc
cases, the factorvR /uUb9u approaches a fixed valueh1

21 .
When the temperature is much less than the barrier he

of the potential, the analytical expression for the current w
a quantum fluctuation in terms of the steepest descent
proximation is given by@5,9,14#

Jqm~F !5kqm

vR

2p

AU09

AuUb9u
exp@2bDUmin~F !#

3$12exp~2bFL !%, ~16!

with the quantum correction factor

kqm5 )
n51

`
mn2n21nnĥ~nn!Fd f~x!

dx G
x5x0

2

1U09

mn2n21nnĥ~nn!Fd f~x!

dx G
x5xb

2

1Ub9

~17!

andn52pkBT/\. DUmin(F) denotes the smaller of the po
tential barriersDU(x,F) along the direction of the externa
driving force andU09 is the curvature ofU at the ground state
x0. The factorkqm tends to unity asT→` and diverges
exactly at the crossover temperatureTc . It is worth noticing
that the value of the quantum correction factor may
greater or less than unity ifd f(xb)/dxÞd f(x0)/dx.

FIG. 3. Dependence of the currentJ(F) on the temperature with
the parametersa51 and t51. The solid line shows the PIMC
result, the dashed line shows the SDA result, the dash-dotted
shows the classical FP result, and the squares are the data of th
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III. NUMERICAL CALCULATION
OF QUANTUM CURRENTS

In the present paper the rocked periodic potentialU(x,F)
and the coupling functionf (x) are taken in the forms

U~x,F !5V~x!2Fx

52V0Fsin~2px/L !1
m

4
sin~4px/L !G2Fx

~18!

and

f ~x!5x1
lL

2p
cos~2px/L !, ~19!

wherem is an asymmetry parameter of the periodic poten
V(x) with m50 and 1 denoting the symmetric and forwa
ratchets, respectively, andl is a nonlinear coupling constan
A typical representative of a memory dissipation is t
Drude form h(t)5(h0 /t)exp(2t/t). The corresponding
u(v) and ĥ(v) read

u~v!5
h0v

11~vt!2
, ĥ~v!5

h0

11vt
. ~20!

Letting t→0 in Eq. ~20!, we recover the Ohmic dampin
case.

T, F, l, t, and a dimensionless parametera5h0/2mV0
are five parameters of the model. HereV0 :5(2p/
L)@V0 /m#1/2 is a frequency quantity introduced here to sc
the current. The energy, e.g., the temperaturekBT, will be
scaled in units of\V0. The tilted potentialsU(x,6F) dis-
play a local maximum and minimum within each period;
us denoting byx0 andx0

6 one of the local minima and byxb

and xb
6 its neighboring local maxima ofV(x) and U(x,

6F) for F.0. Those coordinatesxs satisfy the condition
]xU(xs ,F)50, i.e.,

FIG. 4. Quantum correction factor as a function of the tempe
ture for differentl520.5, 0.0, 0.5, and 0.8 from top to bottom
The parameters arem51, a52, t51, andFs50.2.
l

t

cosS 2pxs

L D5
A112m224mFs21

2m
, ~21!

andFs5FL/V02p. One thus has the relationsx0
2,x0,x0

1

andxb
2,xb,xb

1 within one period structure for a tilted for
ward ratchet. The ground and barrier frequencies are de
mined by

v05vb :5@ uU9~xs ,F !u/m#1/2

5V0@ usin~2pxs /L !1m sin~4pxs /L !u#1/2. ~22!

Hence vb
1,vb,vb

2 due to uU9(xb
1)u,uU9(xb)u

,uU9(xb
2)u.

In the calculations of the PIMC method, we takeN550
andM51000 to obtain sufficiently accurate results. Next w
fix the barrier height of the original potentialV(x) through
V051.5\V0. In Fig. 1 we plot the tilted washboard ratche
U and the effective classical potentialsUe f f in units of\V0
with the parameterskBT50.5\V0, a52, t51, and l
50.5. We have found that the effect of quantum fluctuat
makes the barrier height ofUe f f decrease while the dissipa
tion makes it increase.

The barrier height of the tilted periodic potentialDUmin
and the factorvR as a function ofFs are shown in Fig. 2. For
an asymmetric periodic potentialV(x), vR is not an even
function of the external driving force. It decreases with i
creasinguFsu; this is because the frequencies of the grou
and barrier states become small whenuFsu increases. Also,
vR decreases whena decreases and increases whent de-
creases; thusa andt will play opposing roles for the stead
current. Moreover, we note thatDUmin

1 ,DUmin
2 for the for-

ward ratchets and thenJ(F)>J(2F) for F.0 in the
present of space-independent friction.

In the linear coupling case, i.e.,l50, the temperature
relation of the currentJ(F) obtained from the various meth
ods for Fs50.3 is shown in Fig. 3. We observe that th

- FIG. 5. Classical average currentJ̄cl ~solid lines! and its quan-

tum correctionJ̄qm ~dashed lines! vs the nonlinear coupling con
stant l for different m50 ~left! and 1 ~right! at the temperature
kBT50.5\V0. Note that sign of the current changes on the rig
hand side of the minima.
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TABLE I. Average currentJ̄/V0 vs temperatureskBT for different external driving forcesFs .

uFsu50.1 uFsu50.2 uFsu50.3
kBT Classical Quantum Classical Quantum Classical Quantum

0.2 0.98331029 -3.29931029 7.65031028 -2.57031029 1.23631026 2.25831027

0.3 -1.98531027 -2.74531027 1.01631026 -2.65231027 1.06631025 2.17431026

0.4 -3.43431026 -3.51831026 -2.75531026 -6.34431026 1.10931025 -5.98231026

0.5 -1.60831025 -1.52331025 -2.66531025 -3.08931025 -2.96431025 -5.00631025

0.6 -4.18131025 -3.85831025 -7.91531025 -7.86131025 -1.19931024 -1.29731024

0.7 -7.88531025 -7.36531025 -1.56231024 -1.52431024 -2.47731024 -2.52631024

0.8 -1.22631024 -1.15731024 -2.47831024 -2.39131024 -3.95231024 -3.89431024

0.9 -1.68731024 -1.59631024 -3.44531024 -3.30531024 -5.47931024 -5.33031024

1.0 -2.13831024 -2.04331024 -4.39331024 -4.23831024 -6.95931024 -6.77831024
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current with quantum fluctuation can become enhanced u
one order of magnitude as compared to the current base
a pure classical analysis when the temperature is clos
2Tc . It is seen from Fig. 3 that the SDA has a few erro
whenkBT.0.5DUmin ; however, our resulting current of th
PIMC method is in agreement with the LS at high tempe
tures.

The quantum correction factor is determined by the ra
of the quantum and classical currents in the calculations
the PIMC method, given byf q5Jqm /Jcl . Indeed,kqm ap-
pearing in Eq.~17! is an approximation of this quantity. Th
dependence off q on the temperature is plotted in Fig. 4 fo
different l. It is interesting to see that the effects of nonli
ear quantum dissipation make the values of the current
crease or decrease. This behavior can be understood
Eq. ~17!: kqm>1 whend f(x0)/dx>d f(xb)/dx, i.e., the fric-
tion of the system at the barrier is less than that of the gro
state; however, kqm may be less than unity whe
d f(x0)/dx,d f(xb)/dx, i.e., the friction of the system at th
barrier is larger than that of the ground state.

The quantity of interest in the present paper is an aver
current J̄: J̄5 1

2 @J(F)1J(2F)#. Figure 5 plots the magni
tude and direction of the average currentJ̄ vs the nonlinear
coupling constantl for the tilted symmetric and forward
ratchets. It is seen that the sign of the average cur
changes whenl varies even for a symmetric periodic pote
tial with m50. Based on the SDA, we know that the dire
tion of J̄ is determined by the three quantitiesvR /uUb9u,
DUmin , and kqm . Because the periodic potential has be
tilted upward or downward, the positions of the local minim
and maxima forU(x,6F) are not identical and the values o
the above three quantities are different along the two dir
tions. We find thatvR

2/uU9(xb
2)u.vR

1/uU9(xb
1)u and f q

2

. f q
1 ; however,DUmin

2 >DUmin
1 whenl.0. If the product

of the former two quantities exceeds the latter, the curr
may be negative for both the symmetric and forward rat
ets. Of course, the value ofl leading to the current reversa
is reduced with decreasingm.

The dependence ofJ̄ on kBT is shown in Table I with the
parametersa52, t51, m51, andl50.5 for several values
of Fs . WhenFs decreases or the temperaturekBT increases,
the asymmetric periodic potential plays less of a selec
role. Thus J̄ produces reversal when the temperatu
increases and the effect of quantum fluctuation ma
to
on
to

-

o
of

n-
om
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e
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n

c-
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e
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the reversion of current easily realized at low tempe
tures. This behavior is also understood from Eqs.~14!
and ~16!: DUmin

1 ,DUmin
2 and vR

1,vR
2 when m51;

however, the average current can be reversed iff q
1! f q

2 .
At high temperatures, the direction of the average c
rent is determined by the factorvR /uU9u and lim

T→`
J̄

5uFu/2L(vR
1/uUb9

1u2vR
2/uUb9

2u), so it is possible thatJ̄
,0 when vR

2/uU9(xb
2)u.vR

1/uU9(xb
1)u even for the for-

ward ratchets.

IV. LANGEVIN SIMULATIONS OF CLASSICAL
INERTIA RATCHET

The generalized Langevin equation with space- and tim
dependent friction can be derived from Eq.~1! and is given
by @15,16#

mẍ~ t !1E
0

t

ds
d f„x~ t !…

dx~ t !
h~ t2s!

d f„x~s!…

dx~s!
ẋ~s!

1
]U„x~ t !,F…

]x~ t !
5

d f„x~ t !…

dx~ t !
«~ t !. ~23!

The Gaussian random force«(t) has zero mean and obey
the generalized fluctuation dissipation theorem,

^«~ t !«~s!&5kBTh~ t2s!. ~24!

Now the friction kernel functionk(t) is taken to be the
Ohmicd-correlated form in order to study mainly the effec
of the coordinate-dependent friction on the inertia ratche
The equations of motion for the particle with massm51
then read

ẋ~ t !5v~ t !,

v̇~ t !5h~x,v !1g~x!j~ t !1F~ t !, ~25!

with

h~x,v !52h~x!v~ t !2
dV~x!

dx
, g~x!25h~x!. ~26!

The newly defined random forcej(t) is Gaussian, has zer
mean, and most importantly isd correlated,

^j~ t !&50, ^j~ t !j~ t8!&52kBTd~ t2t8!. ~27!
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FIG. 6. Average position̂x(t)& vs time ~the common param-
eters arete550.0 andA50.5) as a function of~a! h0 with m51,
l850.0, and kBT50.2 ~here the results corresponding toh0

50.05 are reduced by two orders of magnitude!, ~b! kBT with m
51, l850.0, andh052.0, and~c! the parametersm and l8 with
kBT50.2 andh052.0.
Here we will again consider space-dependent frictio
which is a symmetric periodic function with the same peri
as the potential

h~x!5h0@11l8cos~2px/L !#. ~28!

For external force we use a systematic deterministic squ
wave field with zero mean in time:

F~ t !5A, 0<t,
1

2
te , mod te ,

F~ t !52A,
1

2
te,t<te , mod te . ~29!

te is the time period of the external driving force, which
assumed to be longer than any other time scale of the sys
in the adiabatic limit.

In this section we apply the stochastic Runge-Kutta al
rithm @17# to numerically integrate a set of Langevin equ
tions~25!. In order to find out whether or not a current exis
we shall look for the behavior of the average position^x(t)&
of the particle as a function of time. In Figs. 6~a!–6~c! the
average position of the particle driven by an external squa
wave field in the presence of space-dependent friction
shown. Every situation described below was obtained w
100 realizations andDt50.01 time step. The different curve
correspond to different damping coefficientsh0 @Fig. 6~a!#,
to different temperatureskBT @Fig. 6~b!#, and to different
nonlinear friction constantsl8 in Eq. ~28! @Fig. 6~c!#.

We want to make the following points. First, in Fig. 6~a!,
there are no transitions out of the wells whenh0→` and
therefore no current. If the friction is too small, i.e.,h0→0,
there is also no current, although the oscillation of the p
ticle along the two directions is strong. Hence a finite, s
tionary current requires a finite dissipation for the rock
ratchets. Next, in Fig. 6~b! we observe that the current van
ishes whenkBT→0 unlessA is quite large. However, the
current does not vanish and reverses whenkBT is large, as
discussed in Sec. III. That is to say that the strong noise d
not completely eliminate the effects of the potential asy
metry. Finally, in Fig. 6~c!, it is important to note the behav
ior of the current as a function ofl8 for fixed kBT andh0.
Note that the direction of the current varies withl8 because
the friction at the barriers is different for the upward a
downward tilted ratchets.

V. CONCLUSION

We apply the path-integral Monte Carlo method to stu
the probability current of the one-dimensional rocked ratc
systems with quantum fluctuation and space-depend
memory damping. Above the crossover temperature, a
average current is induced by a zero-mean external driv
force in the presence of coordinate-dependent friction e
for the symmetric periodic potential. The present approa
can be reduced to the classical current with finite barrie
high temperatures and agrees with the result of the stee
descent approximation at low temperatures. The quantum
fect makes a ratchet play less of a selective role and
memory time of the damping plays an opposing role for
current against the friction strength. The coordina
dependent friction can make the magnitude of the quan
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current along the direction of the external driving force
crease or decrease. Using the Langevin simulations for
classical inertia ratchet with space-dependent friction,
find that the particle can reverse the direction of the aver
motion upon a variation of the temperature or depending
the form of friction.
m.
he
e
e
n
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